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Abstract.19

Background: The increasing availability of databases containing both magnetic resonance imaging (MRI) and genetic data
allows researchers to utilize multimodal data to better understand the characteristics of dementia of Alzheimer’s type (DAT).
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Objective: The goal of this study was to develop and analyze novel biomarkers that can help predict the development and
progression of DAT.
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Methods: We used feature selection and ensemble learning classifier to develop an image/genotype-based DAT score that
represents a subject’s likelihood of developing DAT in the future. Three feature types were used: MRI only, genetic only, and
combined multimodal data. We used a novel data stratification method to better represent different stages of DAT. Using a
pre-defined 0.5 threshold on DAT scores, we predicted whether a subject would develop DAT in the future.
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Results: Our results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) database showed that dementia scores using
genetic data could better predict future DAT progression for currently normal control subjects (Accuracy = 0.857) compared to
MRI (Accuracy = 0.143), while MRI can better characterize subjects with stable mild cognitive impairment (Accuracy = 0.614)
compared to genetics (Accuracy = 0.356). Combining MRI and genetic data showed improved classification performance in
the remaining stratified groups.
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Conclusion: MRI and genetic data can contribute to DAT prediction in different ways. MRI data reflects anatomical changes
in the brain, while genetic data can detect the risk of DAT progression prior to the symptomatic onset. Combining information
from multimodal data in the right way can improve prediction performance.
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INTRODUCTION33

Alzheimer’s disease (AD), or dementia of Alzhei-34

mer’s type (DAT), is a progressive neurodegenera-35

tive condition characterized by psychiatric, cognitive,36

and structural deteriorations, accounting for 60%37

to 80% of all dementia cases [1]. As there is no38

currently available cure, there is a substantial inter-39

est in finding biomarkers that can detect those at40

risk at early stage of the disease before the symp-41

tomatic onset. Data from various modalities have42

been obtained and analyzed in search of biomarkers43

that can reliably diagnose DAT at its early stages. For44

example, magnetic resonance imaging (MRI) is the45

most widely used data modality for identifying char-46

acteristic structural changes in the brain associated47

with DAT progression [2–6]. Genetic information is48

another modality that has been shown to be effec-49

tive in predicting the likelihood of developing DAT50

even before pathological changes begin. A num-51

ber of genetic risk factors have been found to be52

associated with DAT, among which the APOE �453

allele accounts for 20–25% of the cases [7]. Multiple54

genome-wide association studies (GWAS) have also55

demonstrated potential associations between single56

nucleotide polymorphisms (SNPs) and DAT [8–13].57

At the time of writing this manuscript, 20 genes has58

been reported to be associated with AD, identified59

through GWAS, most of which are associated with60

moderate to small effect sizes [7].61

MRI and genetic data have distinct properties that62

can contribute to the prediction of DAT progres-63

sion. MRI data provides tissue level information and64

may reflect phenotype information about anatomical65

changes in the brain since the early stages of DAT,66

and genetic data provides molecular level information67

and may encode genotype information of probable68

DAT progression even in the absence of detectable69

brain changes. Combining information from geno-70

type and phenotype data may reveal patterns that are71

not visible when working with individual modalities72

separately, allowing for more robust predictions. With 73

the increasing availability of databases that contain 74

both MRI and genetic data, such as the Alzheimer’s 75

Disease Neuroimaging Initiative (ADNI), multiple 76

studies have explored the effects of integrating 77

both modalities in DAT risk prediction, suggesting 78

that combining the complementary information from 79

both modalities can enhance the diagnosis perfor- 80

mance [14–22]. However, existing image/genotype 81

studies of DAT mainly focused on SNPs from pre- 82

viously known DAT-related genes [14–22]. Such 83

approaches rely on existing knowledge and may 84

reduce the chances of discovering novel genetic risk 85

factors. 86

In this study, we address the above-mentioned 87

potential limitations in the current research of genetic 88

study for AD by using all available SNPs in the 89

ADNI database to uncover potentially new genetic 90

risk factors of DAT. We have designed a robust feature 91

selection technique to address the high dimension- 92

ality of genetic data. We proposed an automated 93

framework to achieve the prognosis of DAT by 94

extracting and fusing information from both brain 95

MRI and genetic data collected from subjects at var- 96

ious stages of the disease and developed a novel 97

image/genotype-based dementia score indicating the 98

probability of a subject developing DAT in the future. 99

We have investigated the effects of using data from 100

MRI, genetic, and combined modalities on DAT pre- 101

diction separately, and provided a detailed report on 102

how each modality contributes to DAT diagnosis. 103

METHODS 104

There are three main steps in the proposed frame- 105

work: 1) data processing: a) brain MRI: segmenting 106

brain tissue, parcellating brain structural regions, and 107

extracting volumetric features, b) SNP: quality con- 108

trol to remove subjects and SNPs with low quality 109

data; 2) feature selection: performing association 110

tests on each modality; and 3) disease stage classi- 111

fication: training a machine learning network with112

the most discriminative features selected above, and113

then using for classification.
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Experimental data114

Brain MRI and genetic data used in preparation of115

this article were obtained from the publicly available116

ADNI database (http://adni.loni.usc.edu). The ADNI117

was launched in 2003 as a public-private partner-118

ship, led by Principal Investigator Michael W. Weiner,119

MD. The primary goal of ADNI has been to test120

whether serial MRI, PET, other biological markers,121

and clinical and neuropsychological assessment can122

be combined to measure the progression of mild cog-123

nitive impairment (MCI) and early AD. In addition,124

ADNI aims to provide researchers with the opportu-125

nity to combine genetics with imaging and clinical126

data to help investigate mechanisms of the disease.127

Group stratification128

A total of 543 subjects from the first phase of ADNI129

(ADNI1) [23] who had both MRI and genetic data130

available were included in the study. We utilized a131

database stratification method focusing on the past,132

current and future clinical diagnosis of the subjects133

in the study [24]. This method divides the subjects134

into seven subgroups based on their screening and135

follow-up clinical diagnosis, in addition to their clin-136

ical diagnosis at the time of the MRI imaging visit.137

Each MRI image corresponds to a clinical diagno-138

sis, and participants may receive multiple diagnoses139

based on their MRI images acquired during the study140

period. Participants’ genetic information, on the other141

hand, remains constant over time. As a result, in this142

study, we only used each participant’s baseline MRI143

data, as well as genetic information.144

Based on the information available during the145

ADNI study period, each participant was assigned146

to one of the seven subgroups described below:147

• sNC (stable NC): Subjects with a normal control148

(NC) diagnosis at baseline imaging visit whose149

diagnosis remained unchanged throughout the150

study window;151

• uNC (unstable NC): Subjects with NC diagnosis152

at baseline imaging visit who progressed to MCI153

at a future timepoint in the study window;154

• pNC (progressive NC): Subjects with NC diag-155

nosis at baseline imaging visit who progressed to156

DAT at a future timepoint in the study window;157

• sMCI (stable MCI): Subjects with MCI diag-158

nosis at baseline imaging visit whose diagnosis 159

remained unchanged throughout the study 160

window;

• pMCI (progressive MCI): Subjects with MCI 161

diagnosis at baseline imaging visit who pro- 162

gressed to DAT at a future timepoint in the study 163

window; 164

• eDAT (early DAT): Subjects with DAT diagnosis 165

at baseline imaging visit who received NC or 166

MCI status at an earlier screening (non-imaging) 167

visit in the study window; 168

• sDAT (stable DAT): Subjects with DAT diag- 169

nosis at baseline imaging visit and earlier visits 170

throughout the study window. 171

Subjects in the pNC, pMCI, eDAT, and sDAT sub- 172

groups are labelled DAT+, indicating that they follow 173

a DAT trajectory and developed DAT during the study 174

window. The sNC, uNC, and sMCI subjects do not 175

progress to DAT during the study period, hence, are 176

denoted as DAT−. The eDAT group has a small sam- 177

ple size (4 subjects), but it has been included in the 178

study for the sake of completeness. The aim of this 179

study was to predict a subject’s future conversion to 180

DAT based on its baseline MRI image and genetic 181

data. Table 1 shows the demographic information for 182

the ADNI subjects used in our experiments, as well 183

as their disease progression subgroup stratification. 184

Data processing 185

Genetic data processing 186

Genotyping information of 757 ADNI1 subjects 187

was downloaded in PLINK [25] format from the 188

LONI Image Data Archive (https://ida.loni.usc.edu/). 189

During the genotyping phase, 620,901 SNPs were 190

obtained on the Illumina Human610-Quad BeadChip 191

platform. APOE was genotyped separately during the 192

study’s screening phase [26]. Genomic quality con- 193

trol was conducted using the PLINK software and 194

included the following steps: 195

• SNP-specific and subject-specific missingness 196

rate check; 197

• Minor Allele Frequency (MAF) check; 198

• Hardy-Weinberg equilibrium (HWE) test; 199

• Gender check; 200

• Sibling pair identification and removal; 201

• Heterozygosity rate check; 202

• Population Stratification 203

The above procedure yielded 521,014 SNPs for 204

570 subjects. Our SNP data was then recoded to 205

reflect the number of minor (second most common) 206

alleles per person for each SNP. The categorical SNP207

features can obtain one of the following possible208

http://adni.loni.usc.edu
https://ida.loni.usc.edu/
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Table 1
Stratification of ADNI subjects based on their longitudinal clinical diagnosis. The stratification was based on two criteria, clinical diagnosis
of subjects at the time of MRI image acquisition and their longitudinal clinical progression. Each subject is assigned a membership in
the form of ‘prefixGroup’, where ‘Group’ is the clinical diagnosis at the current imaging visit, and ‘prefix’ signals past or future clinical
diagnoses. For example, a subject is designated as pNC if the subject was assigned an NC diagnosis at that particular imaging visit, but
the subject converts to DAT at a future timepoint. The eDAT images are associated with the diagnosis of DAT, but the subject had received
NC or MCI status during previous ADNI visits (conversion within ADNI window), whereas the sDAT images belong to the subjects with
a consistent clinical diagnosis of DAT throughout the ADNI study window, hence these individuals have progressed to DAT prior to their

ADNI recruitment. Clinical diagnosis at the time of imaging is shown in bold under the “Clinical progression” column

Dementia Group name Clinical Clinical progression Subjects Agea (y) CSFa

trajectory diagnosis (M:F) (t-tau/A�1–42)
at baseline

DAT− sNC: stable NC NC NC → NC 58:51 75.79 (4.93) 0.34 (0.23)
DAT− uNC: unstable NC NC NC → MCI 14:8 76.57 (3.70) 0.39 (0.19)
DAT− sMCI: stable MCI MCI MCI → MCI 65:36 74.70 (7.35) 0.67 (0.52)
DAT+ pNC: progressive NC NC NC → MCI → DAT 6:8 76.49 (4.33) 0.75 (0.42)
DAT+ pMCI: progressive MCI MCI MCI → DAT 99:56 73.85 (6.85) 0.82 (0.45)
DAT+ eDAT∗: early DAT DAT NC → MCI → DAT or MCI → DAT 2:2 75.80 (4.13) 0.65 (0.00)
DAT+ sDAT: stable DAT DAT DAT → DAT 74:64 75.19 (7.54) 0.89 (0.46)

NC, normal controls; MCI, mild cognitive impairment; DAT, dementia of Alzheimer’s type; CSF, cerebrospinal fluid, t-tau, total tau; A�1–42,
amyloid-� 1–42; DAT+, On DAT trajectory, i.e., at some point in time, these subjects will be clinically diagnosed as DAT; DAT−, not on the
DAT trajectory and will not get a DAT diagnosis in the ADNI window. aThe mean (standard deviation) age and CSF measure values within
each group are given CSF measures were only available for a subset of images in each of the groups: sNC (57), uNC (17), sMCI (55), pNC
(8), pMCI (88), eDAT (1), sDAT (87). ∗The eDAT group has a small sample size (4 subjects), but it has been included in the study for the
sake of completeness.

values: –1 for missing information; 0 for homozygous209

major alleles (2 major alleles); 1 for heterozygous210

alleles (1 minor and 1 major alleles); and 2 for211

homozygous minor alleles (2 minor alleles).212

APOE �2, APOE �3, and APOE �4 were then213

added to SNPs. These three APOE alleles are also214

categorical, and each of them can obtain one of the215

following three values: –1 for missing information;216

0 if the allele does not exist; and 1 if it does. In217

the remaining text of the manuscript, we refer to218

the combination of SNP and APOE features as the219

“genetic features” (521, 014 + 3 = 521, 017 features).220

Finally, we excluded subjects that had no diagnosis221

label available, leaving 543 subjects for our analysis.222

Brain MRI processing223

We used the FreeSurfer software (version 5.3)224

(http://surfer.nmr.mgh.harvard.edu/) to segment the225

T1-weighted baseline MRI images into the gray mat-226

ter (GM), white matter (WM), and cerebrospinal fluid227

(CSF) [27] regions. Extensive manual quality control228

was then employed to correct the automated tissue229

segmentations according to the FreeSurfer guide-230

lines. Following the QC step, we used Freesurfer’s231

cortical [28] and subcortical [29] labeling pipelines232

and divided the GM and CSF tissue regions into 91233

distinct regions.234

We used a generalized linear model (GLM)235

framework introduced in our previous publication 236

[30] to remove the individual heterogeneity due to 237

sex, scanner field strength, scanner type, and total 238

intracranial vault (TIV) to only retain differences 239

due to AD-induced volume change. Following the 240

data harmonization step, for each baseline image, we 241

calculated the standardized residual value (w-score) 242

from the measured AD-related volumes to be used as 243

the features alongside the genetic features to train the 244

machine-learning classifier for computing the DAT 245

score. Details regarding calculating the w-score can 246

be found in our previous publications [4, 30]. 247

Feature selection and DAT score computation via 248

supervised ensemble learning 249

To compute the proposed DAT score from the 250

w-score brain volume features (MRI-based score), 251

genetic features (genetic-based score), and the com- 252

bination (MRI + genetic-based score), we used a two- 253

step supervised classification model that combines 254

multiple distinctly trained classifiers into a single, 255

more robust classification model using the ensem- 256

ble learning technique [31]. We have previously 257

used this technique to develop a) fluorodeoxyglucose 258

positron emission tomography (FDG-PET) imaging- 259

based score [24] and b) MRI-based score [4] for early 260

DAT detection and achieved the state-of-the-art per- 261

formance. 262

In the first step, the model was used to select the 263

most discriminative features from MRI and genetic264

data, and in the second step, the DAT score was265

http://surfer.nmr.mgh.harvard.edu/
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computed using the fixed set of features selected266

before. In both steps, only subjects from the sNC267

(N = 109) and sDAT (N = 138) classes (247 subjects),268

the groups with the highest clinical diagnosis cer-269

tainty, were used to train the model. The sDAT class270

represents the DAT+ group and the sNC class repre-271

sents the DAT− group.272

To avoid overfitting on the training data, the273

sub-bagging approach [32] was employed to ran-274

domly generate F = 10 subsets of the training data275

with a sampling ratio of 0.8. To avoid class imbal-276

ance, we used stratified sampling to select the same277

number of subjects from each class (based on the278

class with the smaller sample size; here sNC),279

i.e., Ntrain = 2 × [0.8 × 109] ≈ 174 subjects randomly280

selected from a total of 247 sNC and sDAT subjects281

in each of the F training subsets.282

Step 1: Feature selection283

There is an experimental relationship between the284

size of training data and the maximum number of fea-285

tures (Kmax) that can be used to train a classifier in286

order to avoid the “curse of dimensionality” and min-287

imize the risk of overfitting, which is that for each F288

subset of training data with Ntrain number of samples,289

a maximum number of Kmax = Ntrain × 2p(e) features290

is required to train the classifier, where p(e) is the291

probability of error [33, 34]. Our goal was to keep p(e)292

as low as possible for all of our experiments while still293

having enough features to train the classifiers. To keep294

p(e) below 5% when using either MRI or genetic data,295

Kmax = Ntrain × 2 × 0.05 = Ntrain /10 [35]. Therefore,296

k = 174/10 ≈ 17 features were selected each time297

based on their effect size on the outcome.298

To identify the most discriminative features,299

we performed statistic-based feature ranking and300

selection on MRI and genetic features separately,301

determining if each features has a significant rela-302

tionship with the outcome (here, being on the DAT+303

trajectory). Statistical-based feature selection meth-304

ods are fast, however, in order to select the right305

algorithm, it is important to pay attention to the data306

type of both input and output variables [36]. Differ-307

ent statistical tests were selected for MRI and genetic308

data after extensive examination and with careful309

attention to their data type (i.e., continuous versus310

categorical). Specifically, we applied Fisher’s Exact311

test [37], a statistical significance test designed for the312

categorical data type that examines each feature indi-313

vidually and assigns an exact significance value to314

each feature, on 521,017 categorical genetic features 315

and Welch’s t-test [38] on 91 continuous w-score 316

volume features, and for each feature type, we 317

obtained F = 10 independent sets of k = 17 features 318

with the largest effect sizes on the outcome. We used 319

effect size rather than p-value to rank the significance 320

of the features because p-values are affected by sam- 321

ple size and a statistically significant p-value may 322

indicate that a large sample size was used rather than 323

demonstrating an actual significant difference. 324

The features were then ranked based on their fre- 325

quency of selection in the F subsets, and the first 326

k = 17 most frequently selected features were cho- 327

sen for the next step to ensure a strong association 328

between the selected features and the disease pat- 329

tern. In cases where features had similar selection 330

frequency, they were deemed to be of equal impor- 331

tance. When necessary, a final set of 17 features was 332

formed by random selection from equally important 333

features. Finally, to investigate the combined effect of 334

MRI and genetic data on the DAT score computation, 335

we combined the selected unique features from both 336

feature types (17 + 17 = 34 MRI + genetic features). 337

Figure 1 illustrates the feature selection process for 338

MRI and genetic data. 339

To evaluate the efficacy of our data-type-specific 340

feature selection procedure, we compared our method 341

with the Least Absolute Shrinkage and Selection 342

Operator (LASSO) [40], which is a regression-based 343

feature selection algorithm that can be used on both 344

categorical and continuous variables to select the 345

most discriminative features. We replaced LASSO 346

with Fisher’s exact test for genetic data and Welch’s 347

t-test for MRI data to pick the most discriminative 348

features in the same settings as before. 349

To support the value of the SNPs selected using 350

our feature selection method, we trained our model 351

with two sets of known AD-related SNPs as features. 352

The first set includes 17 AD-related SNPs reported 353

by Giri et al. [54], and the second set includes 17 354

SNPs from the top 10 AD-related genes reported 355

in the Alzgene database (http://www.alzgene.org/). 356

Table 2 contains information about the SNPs iden- 357

tified in the aforementioned studies. Not all SNPs 358

listed in these two studies were available in the ADNI 359

dataset. 360

Step 2: DAT score computation 361

We trained a probabilistic multi-kernel classifier, 362

Variational Bayes Probabilistic Multi-Kernel Learn- 363

ing (VBpMKL) [41] on F training subsets containing 364

174 randomly selected sNC and sDAT subjects. The 365

VBpMKL classifier performs hyperparameter tuning366

by applying different kernels [42] (e.g., Gaussian,367

http://www.alzgene.org/
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Fig. 1. Graphic representation of the feature selection process for MRI and genetic data. Using a sub-bagging approach, F = 10 subsets of
training data including 80% of the sNC and sDAT subjects are first generated. Then, separate statistical tests are applied on MRI (Welch’s
t-test) and genetic data (Fisher’s exact test) to select the most discriminative k = 17 features for each F subsets of data. This process generates
10 sets of k = 17 features for each data modality. The features are then ranked based on their selection frequency and the final sets of 17
features are chosen for the DAT score computation step. To investigate the joint effect of MRI and genetic data, features from both modalities
were combined (17 + 17 = 34 MRI + genetic features).

second-order polynomial) to each feature space and368

learning the weight of each kernel for different fea-369

tures using the variational Bayesian approximation,370

and then outputs a probabilistic estimation to each371

class for each data. The kernels applied to each feature372

space in this study were linear, first-order polynomial,373

second-order polynomial, and third-order polyno- 374

mial. 375

The above procedure was performed separately 376

using the MRI, genetic or MRI + genetic features 377

selected in Step 1. After training, each probabilis- 378

tic kernel classifier outputted the probability pi ε [0 379

1], i = {1,...,F} that the input data belonged to the 380

DAT+ class (1 – pi denotes the probability of DAT− 381

membership). The final image/genotype-based DAT382

score (MRI DAT score: MRDATS, genetic DAT383
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Table 2
Known AD-related SNPs reported in the literature. Left column:
17 AD-related SNPs reported in Giri et al. [54], Right column: 17
SNPs from the top 10 AD-related genes reported in the Alzgene
database. 11 SNPs have been mutually reported to be related with

Alzheimer’s disease in both datasets

Giri et al. [54] Alzgene
SNP ID (gene) SNP ID (gene)

rs10498633 (SLC24A4/RIN3) �4 (APOE)
rs17125944 (FERMT2) �3 (APOE)
rs3851179 (PICALM) rs3851179 (PICALM)
rs541458 (PICALM) rs541458 (PICALM)
rs610932 (MS4A6A) rs610932 (MS4A6A)
rs3865444 (CD33) rs3865444 (CD33)
rs3826656 (CD33) rs3826656 (CD33)
rs670139 (MS4A4E) rs670139 (MS4A4E)
rs9296559 (CD2AP) rs9296559 (CD2AP)
rs3764650 (ABCA7) rs3764650 (ABCA7)
rs7561528 (BIN1) rs7561528 (BIN1)
rs744373 (BIN1) rs744373 (BIN1)
rs2718058 (NME8) rs12989701 (BIN1)
rs3818361 (CR1) rs3818361 (CR1)
rs2305421 (ADAM10) rs6701713 (CR1)
rs11771145 (EPHA1) rs1408077 (CR1)
rs11767557 (EPHA1) rs11136000 (CLU)

score: GENDATS, and MRI + genetic DAT score:384

MRGENDATS) was then defined as the average of all385

probabilistic predictions over F classifiers. The DAT386

score is scalar and can be viewed as a measure of sim-387

ilarity to the DAT−/DAT+ classes, i.e., a score close388

to 1 indicates similarity with the DAT+ and a score389

close to 0 reveals similarity with the DAT− class.390

To avoid biased estimates, the DAT score val-391

ues were calculated using the out-of-bag estimation392

method (using only the remaining 20% of the sub-393

jects in each of the F training subsets) [24]. The394

DAT score for a subject in sNC and sDAT groups395

(training groups) was calculated using only predic-396

tions from ensemble classifiers that did not have that397

subject in their training subset. We further evalu-398

ated the performance of the trained ensemble model399

on the remaining stratified subgroups (uNC, pNC,400

sMCI, pMCI, and eDAT; testing groups). The sub-401

jects belonging to these groups were unseen by the402

classifiers since they have not been included in the403

training process.404

A threshold of 0.5 was used to create a diagnostic405

label of DAT− or DAT+ from the DAT score. Sen-406

sitivity, specificity, accuracy, and balanced accuracy407

were then obtained by comparing the label to the408

actual clinical diagnosis. The area under the curve409

was also calculated by scanning the threshold from410

0 to 1 which is an indication of the separation of 411

the class (DAT−/DAT+) histograms. To compare the 412

group-wise differences, DAT score distribution and 413

prediction accuracy were also obtained for each strat- 414

ified group. 415

RESULTS 416

Salient feature selection for DAT score 417

computation 418

The final set of 17 features for each feature type was 419

obtained by choosing the most frequently selected 420

features in the F = 10 classifiers. Figure 2 shows the 421

frequency of selection for the entire set of features 422

chosen at least once by the classifier ensemble. Fea- 423

tures with a similar selection frequency were deemed 424

equally important. For example, Fig. 2, bottom row, 425

shows that 12 genetic features were chosen twice 426

(20%) and thus were of equal importance. To cre- 427

ate the final set of 17 features for genetic data, we 428

randomly selected 7 of the 12 features chosen twice 429

(20%) by the classifier ensemble, as well as the first 430

10 features chosen more than twice. The final set of 431

features for each feature type is highlighted in Fig. 2. 432

14 of the top 17 MRI features were chosen all 433

the time (100%) by the classifiers in the ensemble. 434

Table 3 includes information about the most dis- 435

criminative MRI features determined by our feature 436

selection method. These features include the volu- 437

metric measures of brain regions such as amygdala, 438

hippocampus, entorhinal cortex, parahippocampal 439

cortex, and fusiform gyrus, which are all well-known 440

biomarkers of DAT. These regions are consistent with 441

many previous studies, which shows the effective- 442

ness of our proposed method [4, 24]. The top selected 443

genetic features are more scattered and have a smaller 444

selection frequency in comparison to the MRI fea- 445

tures. The APOE �4 allele, the best-known genetic 446

risk factor for AD, has always been chosen alongside 447

the other two APOE alleles (�2 and �3). The first sec- 448

tion of Discussion provides a detailed analysis of the 449

identified genetic features shown in Fig. 2. 450

DAT score distribution and accuracy across 451

different stratified groups 452

Figure 3 displays the DAT score distribution pat- 453

tern for all stratified groups using genetic, MRI, and 454

genetic + MRI features. GENDATS (Fig. 3, top row) 455

shows concentration below the threshold for sNC and 456

uNC and above the threshold for the rest of the groups, 457

while MRDATS and MRGENDATS (Fig. 3, mid- 458

dle and bottom row) indicate concentration below 459
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Fig. 2. Feature selection results for MRI (top) and genetic (bottom) data. Frequency of selection indicates the amount of time each feature
has been selected by the classifiers (For example: 80% means that a particular feature has been selected using 8 of the F = 10 classifiers). The
top 17 most discriminative features are highlighted for each feature type. Top row: The overall set of MRI features selected by the classifier
ensemble using Welch’s t-test. L indicates the left hemisphere and R indicates the right hemisphere of the brain. Bottom row: The overall
set of genetic features selected by the classifier ensemble using Fisher’s exact t-test. SNP (chromosome number) has been displayed. Final
features (boxed in red) have been chosen randomly if their frequency of selection were the same.

Table 3
Most discriminative MRI features determined by the feature selec-
tion process and their frequency of selection. These MRI features
indicate the volumetric measures of the brain ROIs. ROIs are listed
in the descending order of their total (left and right) selection

frequency

ROI name Description Selection
frequency (%)

[left | right]

Hippocampus Allocortex (Subcortical)
region

100 | 100

Amygdala Subcortical region 100 | 100
Entorhinal Cortical region 100 | 100
Fusiform Cortical region 100 | 100
Inferior temporal Cortical region 100 | 100
Middle temporal Cortical region 100 | 100
Para hippocampal Cortical region 100 | 70
Inferior parietal Cortical region 60 | 100
Inferior–lateral-

ventricle
Inferior or temporal horn

of the lateral ventricle
70 | 30

Supramarginal Cortical region 40 | 00
Precuneus Cortical region 10 | 20

the threshold for sNC, uNC, sMCI, and pNC and 460

above the threshold for the rest. The majority of the 461

sMCI group (purple) was misclassified using genetic- 462

only features and the majority of the pNC (orange) 463

groups were misclassified using the MRI-only fea- 464

tures. Combining both features resulted in a DAT 465

score distribution that was neutral for sMCI and pNC, 466

while it showed improved performance for the rest. 467

Figure 4 displays the classification accuracy ach- 468

ieved by comparing a subject’s actual diagnosis 469

(DAT−: sNC, uNC, and sMCI, DAT+: pNC, pMCI, 470

eDAT, and sDAT) with the DAT+/DAT− class labels 471

obtained using the 0.5 threshold. For most groups, 472

combining MRI and genetic data yielded better accu- 473

racy results than using either feature alone. The 474

exceptions were the sMCI and pNC groups. The 475

sMCI group had a low accuracy (0.356) when genetic476

features were used, but a higher accuracy when MRI477
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Fig. 3. DAT score distribution among the 7 stratified subgroups for each feature type. sNC, uNC, and sMCI groups belong to the DAT−
trajectory and pNC, pMCI, eDAT, and sDAT groups belong to the DAT+ trajectory. DAT+/DAT− groups are separated with a red vertical line.
A midway threshold of 0.5 for DAT scores is shown using a black horizontal line. Top row: Genetic DAT score (GENDATS) distribution,
Middle row: MRI DAT score (MRDATS) distribution, and Bottom row: MRI + Genetic DAT score (MRGENDATS) distribution across
different stratified groups. Median of the DAT score for each group is shown using a white circle. ∗small sample size (4 subjects)

Fig. 4. Classification accuracy for each group obtained by comparing the true diagnostics (DAT−: sNC, uNC, and sMCI, DAT+: pNC,
pMCI, eDAT, and sDAT) with the dementia trajectories (DAT− or DAT+) assigned to each subject using a threshold from the DAT scores.
Blue bars show accuracy using genetic features, orange bars indicate accuracy using MRI features and yellow bars display accuracy for the
combined features. ∗small sample size (4 subjects)

features were used (0.614). The pNC group, on the478

other hand, had a low accuracy (0.143) using MRI479

features, but a very high accuracy (0.8571) using480

genetic features. Combining features for these two 481

groups yielded an accuracy that was in between the 482

two DAT scores trained with individual features.

Classification accuracy across NC/MCI/DAT 483

groups and DAT−/DAT+ classes 484

Figure 5, left column, compares the classification 485

accuracy of the conventional NC, MCI, and DAT486

groups using our three feature types. Here, NC is487
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Fig. 5. Classification accuracy obtained by comparing the true diagnostics with the dementia trajectories assigned to each subject using a
0.5 threshold from the DAT scores. Left column: classification accuracy comparison between the conventional NC (sNC, uNC, and pNC),
MCI (sMCI and pMCI), and DAT (eDAT and sDAT) groups, Right column: classification accuracy comparison between DAT− (sNC, uNC,
and sMCI) and DAT+ (pNC, pMCI, eDAT and sDAT) groups. Blue bars show accuracy using genetic features, orange bars indicate accuracy
using MRI features and yellow bars display accuracy for the combined features.

made up of the sNC, uNC, and pNC stratified groups,488

MCI is made up of the sMCI and pMCI groups, and489

DAT is made up of the eDAT and sDAT groups. Using490

the combined data (MRI + genetic) resulted in bet-491

ter performance than using either feature alone in all492

groups. When compared to MRI data, genetic data493

produced slightly better results for the NC group494

(0.824 versus 0.809), whereas MRI data produced495

better results for the MCI (0.609 versus 0.516) and496

DAT (0.866 versus 0.803) groups. Overall, NC and497

DAT groups had higher classification accuracy in498

comparison to MCI.499

Figure 5, right column, compares the classifica-500

tion accuracy of the DAT− and DAT+ classes. The501

DAT− class includes the sNC, uNC, and sMCI strat-502

ified groups, whereas the DAT+ class includes the503

pNC, pMCI, eDAT, and sDAT groups. For the DAT−504

class, MRI data had the highest accuracy and genetic505

data had the lowest accuracy, whereas for the DAT+506

class, the combined data (MRI + genetic) had the507

highest accuracy and MRI data had the lowest accu-508

racy. Overall, the accuracy for both DAT− and DAT+509

classes appear to be in the same range.510

DAT score distribution among training and511

testing groups512

Figure 6 shows the histogram distribution of the513

DAT score among the training groups (sNC and514

sDAT) for each data type. All three histograms 515

show substantial distinction between the DAT+ (blue) 516

and DAT− (green) classes with the MRGENDATS 517

histogram (Fig. 6, bottom row) showing the best per- 518

formance. The mean DAT score for the sNC group 519

(the smaller the better) decreased from 0.257 and 520

0.208 with genetic-only or MRI-only features respec- 521

tively, to 0.119 using the combined features. The 522

mean DAT score for the sDAT group (the larger 523

the better) has increased from 0.717 and 0.777 with 524

genetic-only or MRI-only features respectively, to 525

0.845 with the combined features. 526

Figure 7, displays the distribution of the DAT 527

score among the unseen testing groups (uNC, pNC, 528

sMCI, pMCI, and eDAT) for each feature type. 529

The DAT scores for genetic features (GENDATS, 530

Fig. 7, top row) demonstrated a higher concentration 531

in the middle while MRDATS and MRGENDATS 532

(Fig. 7, middle and bottom rows) show a better 533

separation between the DAT− and DAT+ classes. 534

The mean GENDATS values were between 0.4 and 535

0.7 for all subgroups with uNC and sMCI (DAT− 536

groups) having slightly smaller values than the rest. 537

The mean MRDATS and MRGENDATS values for 538

DAT− groups (uNC and sMCI) were smaller than 539

DAT+ groups (pMCI and eDAT) except for the pNC 540

group. 541

Comparison between feature selection methods 542

Figure 8 shows the top 17 features selected using 543

LASSO and Fisher/t-test and their corresponding544

selection frequency. The color map indicates the545
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Fig. 6. DAT score distribution among sNC and sDAT subjects and classification performance obtained in assigning either the DAT− or
DAT+ trajectory using a 0.5 threshold. Top row: Genetic DAT score (GENDATS) results using only genetic features. Middle row: MRI DAT
score (MRDATS) results using only MRI features. Bottom row: MRI + Genetic DAT score (MRGENDATS) results using combined features.
The (number of subjects: mean DAT score) is shown for each subgroup. Balanced accuracy is the mean of the sensitivity and specificity
measures.

frequency of selection (in percent) for each of the fea-546

tures using the ensemble classifier. For example, 80%547

means that a particular feature has been selected using548

8 of the F = 10 classifiers in the ensemble. Because549

of the fundamental differences between the feature550

selection methods, the top 17 features are different551

for each feature type. For MRI, 12 features have been552

selected using either Welch’s t-test or LASSO (Fig. 8,553

Right column), while 6 genetic features have been554

mutually selected by Fisher’s exact test and LASSO555

(Fig. 8, Left column). The sparsity of the selected556

genetic features can be explained by the large number557

of initial features.558

Table 4 compares the classification performance559

of LASSO and Fisher/t-test (using Fisher’s exact560

test on genetic and Welch’s t-test on MRI data)561

methods using genetic, MRI, and genetic + MRI562

features. In both training and testing phases, the563

Fisher/t-test method outperformed LASSO when the564

combination of MRI and genetic data were used,565

with the only exception that LASSO was slightly566

higher but non-significant specificity on testing567

subjects (Fisher/t-test: 0.579 ± 0.021 and LASSO:568

0.587 ± 0.03). Using genetic + MRI features, signif- 569

icantly better results (with 0.01 and 0.05 p-values) 570

were obtained with the Fisher/t-test method. Using 571

genetic-only features, Fisher-based feature selection 572

resulted in statistically better training performance, 573

but there was no clear winner in the testing results. 574

T-test-based feature selection gave a slightly bet- 575

ter test performance when only MRI features were 576

used. Overall, the Fisher/t-test method outperformed 577

LASSO in most cases. 578

GENDATS results using known AD-related SNPs 579

in literature 580

Figure 9 displays the DAT score distribution 581

among the 7 stratified groups using the above two 582

SNP sets and our SNP set (extracted using Fisher’s 583

exact test) as features. The GENDATS distribution 584

using SNPs from Giri et al. [54] and the Alzgene 585

database (top and middle rows, respectively) is highly 586

concentrated around the 0.5 threshold for all 7 strati- 587

fied groups. For most groups, the median value is also 588

really close to the threshold, indicating a very small 589

difference between the GENDATS distribution of the 590

stratified groups and a random-like prediction pattern 591

using those SNPs. GENDATS distribution using our592

method (bottom row), on the other hand, shows a593
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Fig. 7. DAT score distribution among the independent validation subjects. The classification performance was obtained by determining
dementia trajectories (DAT− or DAT+) for each subject using a 0.5 threshold. The MRDATS histograms corresponding to the DAT− (uNC,
sMCI) and the DAT+ (pNC, pMCI, eDAT) trajectories are stacked together respectively. Top row: Genetic DAT score (GENDATS) results
using only genetic features. Middle row: MRI DAT score (MRDATS) results using only MRI features. Bottom row: MRI + Genetic DAT
score (MRGENDATS) results using combined features. The (number of subjects: mean DAT score) is shown for each subgroup. ∗small
sample size (4 subjects)

clear distinction between different stratified groups.594

Using our method, the sNC and uNC groups had a595

pattern similar to DAT−, while the rest of the groups596

had a pattern similar to DAT+. When the AD-related597

SNPs from the literature were used, the sNC and uNC598

groups showed a similar pattern to DAT−, but no599

conclusion can be drawn for the rest of the strati-600

fied groups, which show no clear tendency to either601

DAT− or DAT+.602

The classification accuracy of the 7 stratified603

groups using the above two SNP sets and our SNP604

set is shown in Fig. 10. As can be seen, accuracy605

for most of the stratified groups is around 0.5 when606

using the SNP sets from Giri et al. [54] and the607

Alzgene database (blue and cyan, respectively), indi-608

cating a random-like pattern in prediction. The sNC609

and uNC groups appear to have slightly better classi-610

fication accuracy than the other groups using the SNP611

sets from the literature, but they still perform worse612

when compared to our method (yellow). The sMCI613

group has a low accuracy using our method, indicat-614

ing that sMCI subjects have a similar pattern to DAT+ 615

rather than DAT−, but no conclusion can be drawn 616

for the sMCI group using SNPs from the literature 617

because the accuracy is very close to 0.5. Overall, 618

using SNPs selected using our method as genetic 619

features yielded better results than AD-related SNPs 620

previously reported in the literature. 621

DISCUSSION 622

Analyzing genetic discoveries 623

Our results replicated some of the AD related genes 624

reported in the literature suggesting the effectiveness 625

of our method. In addition, we identified potentially 626

novel SNPs that could be further explored to verify 627

their associations with DAT. Table 5 includes infor- 628

mation about SNPs that have been selected at least 629

twice (Selection frequency ≥ 20% in Fig. 2). Features 630

with similar frequency of selection were considered 631

to have the same level of importance, and therefore, 632

Table 5 shows those SNPs that were not included 633

in the top 17 features as well. The rs1864036, 634

rs12522102, and rs17197559 SNPs belong to an635

uncharacterized RNA gene on chromosome 5 called636
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Fig. 8. The top 17 MRI and genetic features selected using different feature selection methods are shown. Left column: genetic features
selected using Fisher’s exact test and LASSO. SNP (chromosome number) has been displayed for genetic features. Right column: MRI
features selected using Welch’s t-test and LASSO. L indicates the left hemisphere and R indicates the right hemisphere of the brain. The
number within each cell indicates the selection frequency (%) for each feature.

LOC105379004 and were selected 50%, 30%, and637

20% of the time respectively. To date, there is638

no existing knowledge of the relationship between639

these SNPs and AD, warranting further investiga-640

tion. The rs4953672 located between the HAAO641

and MTA3 genes (chromosome 2), rs2085925 on642

gene TRAPPC9 (chromosome 8), and rs6116375643

on gene PRNP (chromosome 20) and were selected644

50%, 40%, and 30% of the time respectively. These645

genes have been reported in previous studies to be646

associated with AD, brain tissue development or647

degeneration, and mental disorder [43–47]. Our study648

has revealed 8 novel SNPs. Four of these SNPs are on649

chromosome X, three on the LOC105379004 gene on 650

chromosome 5, and one on chromosome 6, indicating 651

the potential importance of chromosomes X and 5 in 652

the development or progression of AD. 653

Feature selection and combination methods 654

In designing the DAT scores, we selected only 655

the pertinent input features by using feature selec- 656

tion methods that were most appropriate for our data 657

type. To avoid overfitting, we restricted the number 658

of features to 10% of the total number of training 659

data (174), yielding 17 features. To evaluate this 660

setup, we ran additional tests with a different number 661

of features (for example, 10 or 25 features instead 662

of 17 for each MRI and genetic feature set) and663

tried different feature combination methods such as664
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Table 4
Classification performance comparison among Fisher/t-test and
LASSO feature selection methods on genetic, MRI, and genetic +

MRI feature types.

Fisher/t-test LASSO
(mean ± sd) (mean ± sd)

Training Results (on sNC and sDAT)

Genetic AUC 0.882 ± 0.036 0.822 ± 0.062†
Sensitivity 0.771 ± 0.052 0.718 ± 0.057†
Specificity 0.832 ± 0.094 0.768 ± 0.119∗
BalAccuracy 0.801 ± 0.045 0.743 ± 0.067†
Accuracy 0.789 ± 0.038 0.733 ± 0.054†

MRI AUC 0.940 ± 0.025 0.954 ± 0.026
Sensitivity 0.871 ± 0.026 0.880 ± 0.032
Specificity 0.918 ± 0.047 0.905 ± 0.040
BalAccuracy 0.894 ± 0.026 0.892 ± 0.030
Accuracy 0.885 ± 0.023 0.888 ± 0.030

Genetic + MRI AUC 0.978 ± 0.011 0.969 ± 0.026
Sensitivity 0.918 ± 0.020 0.910 ± 0.038
Specificity 0.932 ± 0.054 0.932 ± 0.058
BalAccuracy 0.925 ± 0.025 0.921 ± 0.033
Accuracy 0.922 ± 0.017 0.916 ± 0.030

Testing Results (on uNC, sMCI, pNC, pMCI and eDAT)

Genetic AUC 0.555 ± 0.009 0.541 ± 0.011†
Sensitivity 0.640 ± 0.024 0.639 ± 0.029
Specificity 0.411 ± 0.039 0.439 ± 0.033
BalAccuracy 0.526 ± 0.013 0.539 ± 0.011
Accuracy 0.545 ± 0.011 0.556 ± 0.011

MRI AUC 0.654 ± 0.014 0.657 ± 0.011
Sensitivity 0.639 ± 0.022 0.627 ± 0.013
Specificity 0.575 ± 0.029 0.560 ± 0.018
BalAccuracy 0.607 ± 0.008 0.593 ± 0.011†
Accuracy 0.602 ± 0.011 0.588 ± 0.012†

Genetic + MRI AUC 0.660 ± 0.006 0.651 ± 0.010†
Sensitivity 0.662 ± 0.019 0.631 ± 0.014†
Specificity 0.579 ± 0.021 0.587 ± 0.030
BalAccuracy 0.620 ± 0.007 0.609 ± 0.011∗
Accuracy 0.627 ± 0.008 0.613 ± 0.008†

Fisher/t-test: Using Fisher’s exact test on genetic features and
Welch’s t-test on MRI features. Training results show the clas-
sification performance of groups with the most certain diagnosis
(sNC and sDAT) and the testing results show the classification
performance of unseen subjects in the remaining stratified groups
(uNC, sMCI, pNC, pMCI and eDAT). The best performance has
been highlighted in red. Symbol ∗ denotes the t-test with p < 0.05
and †denotes the t-test with p < 0.01 as compared to the Fisher/t-test
results

ranking and varying ratios, but they either degraded665

performance or did not result in a statistically bet-666

ter result. In addition, to evaluate the performance of667

our data-type-specific feature selection procedure, we668

compared our method with a regression-based feature669

selection method called LASSO [40] which showed670

the superior performance of our method.671

Comprehensive analysis of DAT score672

distribution for the stratified groups673

In order to interpret the DAT score distribution 674

results (Fig. 3) accurately, it is necessary to be 675

mindful about the difference between the charac- 676

teristics of MRI and the genetic features. Genetic 677

features remain almost the same over time and are not 678

dependent on the longitudinal changes, while MRI 679

features are highly time sensitive and can change 680

drastically over time. A subject may have multiple 681

MRI visits during the study window therefore car- 682

rying additional longitudinal information. However, 683

only the baseline MRI imaging data for each sub- 684

ject was included in this study, indicating only the 685

subject’s current clinical diagnosis. 686

The GENDATS value for the sMCI group fell 687

above the threshold for most of the subjects sug- 688

gesting that based on the genetic data, sMCI subjects 689

have a similar pattern to DAT rather than NC. GEN- 690

DATS for the rest of the stratified groups followed 691

our anticipated pattern. MRDATS for the pNC group 692

was highly concentrated below the threshold and had 693

a similar distribution to the sNC and uNC groups. 694

These similarities can be explained by referring to 695

the fact that only the baseline MRI data has been used 696

and all of these three groups are in a healthy condition 697

at baseline. We anticipate that incorporating longitu- 698

dinal MRI data can help improve the results for the 699

pNC group. MRDATS followed our expected pattern 700

for the other stratified groups. 701

MRGENDATS had a higher concentration on the 702

correct side of the threshold for those groups that have 703

previously been classified correctly using MRI and 704

genetic features. MRGENDATS for sMCI was con- 705

centrated below the threshold which indicates adding 706

MRI data to genetic may prevent misclassification 707

due to the sole use of genetic data. On the other 708

hand, adding genetic data to MRI for the pNC group 709

has resulted in an almost even MRGENDATS dis- 710

tribution (6 subjects were above and 8 subjects were 711

below the threshold, while only 2 subjects were above 712

the threshold for MRDATS). Possible explanations 713

include lower prediction power of genetic data or 714

small number of subjects in the pNC category. This 715

may be addressed in the future by changing the ratio 716

of the final selected MRI and genetic features and 717

increasing the sample size of the data. 718

Benefits of combining MRI and genetic data for 719

DAT prediction 720

MRI and genetic data have unique characteristics 721

and can contribute to DAT prediction in different 722

ways. MRI data can reveal anatomical changes in the 723

brain, whereas genetic data can be used to assess the724

risk of developing DAT even before the symptoms725
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Fig. 9. GENDATS distribution among the 7 stratified subgroups for each SNP set. sNC, uNC and sMCI groups belong to the DAT− trajectory
and pNC, pMCI, eDAT, and sDAT groups belong to the DAT+ trajectory. DAT+/DAT− groups are separated with a red vertical line. A midway
threshold of 0.5 for DAT scores is shown using a black horizontal line. Top row: GENDATS distribution using SNPs reported in Giri et al.
[54], Middle row: GENDATS distribution using SNPs from the top 10 AD-related genes reported in the Alzgene database, and Bottom row:
GENDATS distribution using SNPs extracted from all available SNPs in the ADNI database using Fisher’s exact test (our method). Median
of the DAT score for each group is shown using a white circle. ∗small sample size (4 subjects)

Fig. 10. Classification accuracy for each stratified group obtained by comparing the true diagnostics (DAT−: sNC, uNC, and sMCI, DAT+:
pNC, pMCI, eDAT, and sDAT) with the dementia trajectories (DAT− or DAT+) assigned to each subject using a 0.5 threshold from the DAT
scores. Blue bars show accuracy using SNPs reported in Giri et al. [54], cyan bars indicate accuracy using SNPs reported in the Alzgene
database and yellow bars display accuracy using SNPs extracted from ADNI database with Fisher’s exact test (our method). ∗small sample
size (4 subjects)

appear. As shown in Fig. 4, adding MRI data to726

genetic data can improve the prediction accuracy for727

subjects in the sMCI group, and adding genetic data 728

to MRI data can improve the prediction accuracy for 729

subjects in the pNC groups. According to Fig. 4, when 730

a single data modality failed to correctly predict the 731

outcome, adding another data modality with distinct732

properties showed to be beneficial in boosting the733
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Table 5
Detail of SNPs selected at least twice using Fisher exact test in the
ensemble. For those SNPs that do not fall exactly on a particular
gene, nearest genes have been reported. Status column indicates
whether SNPs have been previously reported to be associated with

Alzheimer’s disease or brain tissue degeneration

SNP ID Selection Chromo- nearest Gene status
freq some
(%)

�4 100 19 APOE known
�3 100 19 APOE known
�2 100 19 APOE known
rs4953672 50 2 HAAO and known

MTA3 [46, 47]
rs1864036 50 5 LOC105379004 novel
rs2085925 40 8 TRAPPC9 known

[43, 45]
rs12522102 30 5 LOC105379004 novel
rs6116375 30 20 PRNP known [44]
rs2405940 30 X SHROOM2 known [49]
rs10465385 30 X LINC02154 novel
rs10924809 20 1 CNST known [43]
rs2883782 20 2 MYO3B known [50]
rs746947 20 3 FRMD4B known [51]
rs10510985 20 3 FRMD4B known [51]
rs6773506 20 3 FRMD4B known [51]
rs7627954 20 3 TNIK known [52]
rs17197559 20 5 LOC105379004 novel
rs524410 20 6 LOC112267968 novel
rs5918417 20 X SYTL5 novel
rs5918419 20 X SYTL5 novel
rs1010616 20 X ZDHHC15 known [53]
rs12860832 20 X PASD1 novel

performance. When both modalities were successful734

in predicting the outcome, combining them produced735

a more accurate result than using either modality736

alone.737

The focus of our study and key novel contribution738

is to compare the relative performance of 1) SNP-739

based genotype features, 2) MRI-based phenotype740

features, and 3) combined genotype and pheno-741

type features using comprehensive feature selection742

and aggregation methods. We conducted our experi-743

ments by adopting previously validated and published744

classification and feature selection methods [4].745

Because the study’s goal is not to develop new746

classification methods with the highest classification747

performance, obtaining the highest absolute accuracy748

of the machine-learning methods was not consid-749

ered the main focus of the experiments reported here.750

Rather, since the goal of this experiment was to eval-751

uate the relative performance comparison of different752

features selected from different modalities (e.g.,753

genotype, phenotype, and genotype + phenotype), the 754

results are reported as found. 755

To this end, we have performed the above fea- 756

ture comparison using our novel cohort stratification 757

which considers future progression for all individuals 758

in identifying them to individual subgroups yielding 759

some very challenging but also very consequential 760

subgroups (such as pNC—individuals who are cur- 761

rently cognitively healthy but are known to later 762

develop AD). Our main conclusion from the study is: 763

1) for most cohorts, combining MRI and genetic data 764

yields better accuracy results than using either feature 765

set alone, but 2) for specific subpopulations such as 766

sMCI and pNC, one modality is found to dominate, 767

for example, genotype features perform better for 768

pNC detection vis-à-vis phenotype features for sMCI. 769

Hence, we showed that a naı̈ve feature concatenation 770

approach is likely insufficient, and this finding high- 771

lights the importance for further studies to develop 772

smartly weighted multi-modal feature aggregation 773

using novel information fusion and machine learning 774

methods. 775

Application of DAT score in a clinical setting 776

In this study, a stratified scheme was used to fur- 777

ther break down the standard NC, MCI, and DAT 778

categories into smaller groups that take into account 779

the longitudinal diagnosis of a subject and provide 780

a clinically relevant perspective. We trained our net- 781

work on subjects belonging to the extreme ends of the 782

DAT spectrum (sNC and sDAT) enabling the oppor- 783

tunity to effectively learn distinction between healthy 784

and AD patterns with the highest possible degree of 785

certainty. The trained model was then used to predict 786

a quantitative biomarker based on MRI, genetic, and 787

MRI + genetic features. The only information needed 788

to generate these predictions is that extracted from 789

MRI and genetic data, and the model does not need to 790

have access to the clinical diagnosis. In a clinical set- 791

ting, clinicians can use our trained model to predict a 792

quantitative score indicating the similarity between a 793

subject’s observed pattern based on MRI and genetic 794

data at the time of clinical visit and AD patterns. This 795

will help predict whether the subjects belong to the 796

DAT− (non-progressive) or DAT+ (progressive) cat- 797

egories, which is extremely useful at the MCI stage 798

in identifying those who will progress to AD in the 799

future. We have previously conducted independent 800

validation on real clinical samples using a similar 801

method on FDG-PET data to enable the translation802

of these methods and test their usefulness in clinical803

practice [55].
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Analyzing the statistical significance of pNC804

results805

The sample size of the pNC stratified subgroup
is relatively smaller compared to other subgroups.
This is a result of our novel stratification method,
which classifies subjects based on their past, present,
and future longitudinal disease progressions. We have
performed rigorous statistical tests to analyze the sta-
tistical significance of our evaluation results on pNC
subjects (n = 14). When comparing GENDATS and
MRDATS results, we look at the same group of 14
patients and classify them using two different classi-
fiers, one using genetic data and the other using MRI
data. Because we are looking at the same patients,
we have used a paired t-test evaluating the difference
between the same patient under classifier #1 (based on
GENDATS) and classifier #2 (based on MRDATS).
Our test statistic is the following:

t = Ȳ1 − Ȳ2√
σ2

1
n

+ σ2
2
n

(1)

where Ȳ1 − Ȳ2 indicates the mean difference between806

pairs of measurements in the two classifiers, σ̂2
1807

and σ̂2
2 are the variances, and n is the popula-808

tion size. We utilized a one-sided test to check if809

the predicted DAT score of classifier #1 is signif-810

icantly greater than the DAT score predicted by811

classifier #2, and our results showed significantly812

(t(13) = 4.33, p = 0.0004) improved predictive power813

for the GENDATS (0.64 ± 0.07) compared to the814

MRDATS (0.24 ± 0.05).815

It is important to note that the population size816

(n = 14) is considered in the test (equation (1)). Thus,817

despite the relatively small population size, we can818

detect a significant difference between the two clas-819

sifiers. The small population size usually leads to big820

variance estimates which can make the two classifiers821

hard to distinguish. However, here the variance esti-822

mates are small enough, even considering the small823

population size, to conclude that the two classifiers824

are significantly different.825

Comparison with previous imaging genetics826

studies827

In this study, we used all available SNPs in the828

ADNI database. The main advantage of using all829

SNPs is that it allows us to investigate potential 830

novel genetic risk factors along with our main task 831

of future DAT prediction. One drawback of using 832

high-dimensional data is that it may contain infor- 833

mation that is irrelevant to the task [48]. To avoid this 834

problem and to ensure a strong association between 835

the selected features and the disease pattern, we have 836

implemented an extensive feature selection method in 837

three steps, as previously discussed in Methods, while 838

many previous studies have limited their SNPs to 839

those on the top AD gene candidates according to the 840

Alzgene database (http://www.alzgene.org) [14, 17, 841

19–22], and others chose their top SNPs based on the 842

findings of previous studies in the literature [15, 16]. 843

An et al. [14] have proposed a hierarchical fea- 844

ture and sample selection method for AD diagnosis 845

using MRI and SNP data and evaluated their method 846

using conventional binary classification tasks. For 847

DAT versus NC task (ours sDAT versus sNC), 848

using only SNP data they received Acc = 77.6% and 849

AUC = 85.5% (ours: Acc = 81.9% and AUC = 90.3%) 850

and for MRI + SNP they got Acc = 92.4% and 851

AUC = 97.4% (ours: Acc = 92% and AUC = 98%). 852

Our method outperformed theirs when using genetic 853

features, with a 4% increase in both Accuracy and 854

AUC, and had a comparable performance when using 855

combined features. Zhou et al. [21] have proposed a 856

stage-wise deep learning algorithm for AD prediction 857

using MRI, PET, and SNP data and evaluated their 858

method using traditional classification tasks. Their 859

multiclass classification showed a median accuracy 860

of less than 55% while we achieved 63.2% accuracy 861

using MRI and SNP data. Our training (sNC/sDAT) 862

results were slightly better than their NC/DAT results 863

(Acc: 92% versus 91.7%) even though we have not 864

used PET data. Venugopala et al. [18] have utilized 865

deep learning methods to investigate the effects of 866

combining multimodal data such as MRI, genetic, 867

and clinical data on AD prediction. They performed 868

a binary classification task on NC versus DAT/MCI 869

(ours sNC versus sDAT), using only MRI data, they 870

received Acc = 86% (ours: Acc = 88.2%), using SNP 871

information only, they got an accuracy of 89% (ours: 872

Acc = 81%) and for MRI + SNP, their best perform- 873

ing model received Acc = 75% (ours: Acc = 92%). 874

Our method outperformed theirs when using MRI 875

by more than 2%, and MRI + SNP by 17%, while 876

their network performed better when using only SNP 877

data (8% percent higher accuracy). Zhang et al. [20] 878

have studied the effects of combining MRI, SNP, CSF, 879

and PET modalities on AD prediction by performing 880

conventional classification tasks using linear support 881

vector machines and three intrinsic feature selec-882

tion algorithms. Their best performing model had a883

http://www.alzgene.org
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classification accuracy of 94.8% for AD versus NC884

task using 378 features from all 4 modalities which885

is slightly better than our sNC versus sDAT accuracy886

of 92% using only 34 SNP and MRI features.887

Limitations and future direction888

Our study has some limitations. Our results are lim-889

ited by the small sample size selected from the ADNI890

dataset and their characteristics, especially for the891

pNC and eDAT stratified groups. We have conducted892

our analysis based on the information available in893

the ADNI study window. Subjects currently on the894

DAT− trajectory might receive a follow-up diagno-895

sis of DAT in the future. In that case, we will review896

our network’s prediction in the future and investigate897

if the misclassification for those subjects can be justi-898

fied by the fact that they did not have a DAT follow-up899

diagnosis. Another approach to addressing this limi-900

tation is to limit the follow-up duration to a specific901

time, such as 3 or 5 years after the baseline, and study902

the probability of pathological onset during that time903

frame, which is a clinically relevant approach and is904

similar to survival analysis for AD.905

In this study, we have achieved our primary goal906

of predicting the future conversion to AD by extract-907

ing MRI and genetic information from sNC and908

sDAT stratified groups as they represent the DAT−909

(stable) and DAT+ (progressive) categories with the910

highest degree of certainty. We have previously911

used this technique to develop a) fluorodeoxyglucose912

positron emission tomography (FDG-PET) imaging-913

based score [24] and b) MRI-based score [4] for914

early DAT detection and achieved the state-of-the-art915

performance. However, this approach could reflect a916

predisposed bias for processes that are not necessar-917

ily linked to AD. A potential solution to this problem918

could be incorporating subjects at earlier stage of the919

AD progression (e.g., sMCI, and pMCI group) to920

learn potential patterns that are caused by additional921

factors during early stage of the AD pathogenesis.922

As a part of our future work, we plan to: 1) use923

the UK Biobank database (https://www.ukbiobank.924

ac.uk), a large-scale biomedical database includ-925

ing genotype data from 500,000 participants and926

brain MRI data from over 44,000 participants, to927

increase the sample size, especially for subjects in928

the pNC and eDAT stratified groups, and to construct929

a more robust model, 2) evaluate the generalizabil-930

ity of the genetic features discovered in this study by931

training our model with subjects from a different AD- 932

related dataset, 3) expand our methodology and use 933

deep-learning- based models such as fully connected 934

networks and Deep Embedding network to investi- 935

gate the potential improvement of the classification 936

performance, 4) use longitudinal MRI data instead 937

of the baseline to include the time related changes, 938

5) limit the follow-up duration to a certain time and 939

incorporate survival analysis approaches and com- 940

pare the results with the current design, 6) remove 941

individual heterogeneity due to age in addition to 942

other factors by means of GLM for MRI data, 7) 943

incorporate smart nonlinear approaches that can cap- 944

ture the importance of each MRI and genetic feature 945

to better integrate them. 8) Specifically, the discov- 946

ery of some important SNPs on the X chromosome 947

suggests that sex plays a role in the progression of 948

AD. Therefore, we will incorporate sex information, 949

along with other demographic factors, such as age and 950

ethnicity, in building future machine learning mod- 951

els. The combined phenotype-genotype features will 952

likely further improve the accuracy of the model and 953

achieve more precise diagnoses. 954
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